Frequency Space Environment Map Rendering

Ravi Ramamoorthi

Pat Hanrahan

ravir@graphics.stanford.edu

hanrahan@graphics.stanford.edu

Stanford University

http://graphics.stanford.edu/papers/freqenv/

Demo

Motivation: Interactive rendering with complex natural illumination and realistic, measured BRDFs

Reflection Equation

 $\overline{L(R(\vec{N})\vec{l})}$

2D Environment Map

Reflection Equation

 $L\!\left(R(\vec{N})\,\vec{l}\,\right)\rho\!\left(\vec{l}\,,\vec{V}\right)$

2D Environment Map BRDF

Reflection Equation

 $B(\vec{N}, \vec{V}) = \int_{\Omega} L(R(\vec{N}) \vec{l}) \rho(\vec{l}, \vec{V}) d\vec{l}$

4D Orientation Light Field 2D Environment Map

BRDF

Previous Work: Blinn & Newell 76, Miller & Hoffman 84 Greene 86, Kautz & McCool 99, Cabral et al. 99, ...

Goals

- Efficiently precompute and represent OLF
- Real-time rendering with OLF

Questions

- Parameterization and structure of OLF
- Structure leads to representation
- Computation and rendering of OLF

OLF Parameterization $B(\vec{N}, \vec{V})$ V Reparameterize Vby reflection vector

Questions

- · Parameterization and structure of OLF
- Structure leads to representation
- Computation and rendering of OLF

Convolution

$$B(\vec{N}, \vec{V}) = \int_{\Omega} L\left(R(\vec{N}) \ \vec{l} \ \right) \rho\left(\vec{l} \ , \vec{V} \ \right) dl$$

$$B = L \otimes \rho \qquad \text{Spatial: integral}$$

$$\begin{vmatrix} \text{Spherical} \\ \text{harmonic analysis} \\ B_{ij} = L_i \rho_{ij} \end{vmatrix}$$
Frequency: product

Ramamoorthi and Hanrahan 01

Implications

Information content of OLF determined by information in lighting and BRDF

Low frequency lighting

High frequency BRDF

Low frequency OLF

Implications

Sampling rates/resolutions

- Minimum of highest light, BRDF frequencies
- Angular resolution proportional to max frequency

Example: Low frequency L

Example: Low frequency lighting [Sloan et al. 02]

- · OLF is low frequency
- Represent with low-order spherical harmonics only
- · Compute OLF using coefficient multiply [Cabral et al. 87, Kautz et al. 02]

Natural Lighting

Natural (high frequency) lighting

4000 terms

400 terms

100 terms

36 terms

Hybrid Representation

- Reflection maps $B_V(\vec{R})$ are high frequency
- View maps $B_{R}(\vec{V})$ are low frequency

- Use hybrid angular frequency-space representation
 - View maps: Use low-order spherical harmonic expansion
 - · Represent coefficient reflection maps explicitly

Spherical Harmonic Reflection Map

- View-dependent reflection (cube)map
- Encode view maps $B_R(\vec{V})$ with low-order spherical harmonics

Spherical Harmonic Reflection Map

$$B(\vec{R}, \vec{V}) = \sum_{i=0}^{N} B_i(\vec{R}) Y_i(\vec{V})$$
Spherical Harmonics

Precomputed coefficient reflection maps

Questions

- · Parameterization and structure of OLF
- Structure leads to representation
- Computation and rendering of OLF

Prefiltering

$$L, \rho \xrightarrow{} L_i, \rho_{ij} \xrightarrow{} B_{ij} = L_i \rho_{ij} \xrightarrow{} B_i(\vec{R})$$

and BRDF

nput Lighting Spherical Harmonic

Convolution

SHRM

- Directly compute SHRM from Lighting, BRDF
- Convolution easier to compute in frequency domain

Prefiltering

$$L, \rho \longrightarrow L_i, \rho_{ij} \longrightarrow B_{ij} = L_i \rho_{ij} \longrightarrow B_i(\vec{R})$$

Spherical Harmonic

- 3 to 4 orders of magnitude faster (< 1 s compared to minutes or hours)
- Detailed analysis, algorithms, experiments in paper

SHRM Rendering We create dynamic reflection map per frame • Weighted sum of prefiltered coefficient reflection maps $B_V(\vec{R}) = \sum_{i=0}^{N} Y_i(\vec{V}) B_i(\vec{R})$ Spherical Harmonics (fixed weighting factor) Prefiltered coefficient reflection maps = .3 + .5 + .2

 B_{2}

Implementation

- Stanford Real-Time Programmable Shading System
- SHRMs used in any shader just like reflection map
- New reflection map computed for each frame
- Real-time (>15Hz) performance on 1.4 GHz Pentium IV with nVidia Geforce 2
- http://graphics.stanford.edu/papers/freqenv/

Summary of Contributions

- Theoretical, empirical analysis of sampling rates and resolutions
 - Frequency space analysis directly on lighting, BRDF
 - Low order expansion suffices for essentially all BRDFs
- Spherical Harmonic Reflection Maps
 - Hybrid angular-frequency space
 - · Compact, efficient, accurate
 - Easy to analyze errors, determine number of terms
- Fast computation using convolution

Implications and Future Work

- Frequency space methods for rendering
 - · Global illumination
 - Fast computation of surface light fields
- Compression for optimal factored representations
 - PCA on SHRMs
- Theoretical analysis of sampling rates, resolutions
 - General framework for sampling in image-based rendering

Acknowledgements

- Stanford Real-Time Programmable Shading System
 - Eric Chan, Bill Mark, Kekoa Proudfoot
- · Readers of early drafts
 - Li-Yi Wei, Olaf Hall-Holt, anonymous reviewers
- Model:
 - · Armadillo: Venkat Krishnamurthy
 - Light probes: Paul Debevec
- Funding
 - Hodgson-Reed Stanford Graduate Fellowship
 - NSF ITR #0085864 "Interacting with the Visual World"

The End

BRDF Parameterization

BRDF

$$\rho(\vec{\omega}_i, \vec{\omega}_o) \square f(\vec{\omega}_i) g(\vec{\omega}_o)$$

- Half Angle $\rho(\vec{\omega}_{\!\scriptscriptstyle h}, \vec{\omega}_{\!\scriptscriptstyle o}, \vec{\omega}_{\!\scriptscriptstyle o}) \,\square\, f(\vec{\omega}_{\!\scriptscriptstyle i}) g(\vec{\omega}_{\!\scriptscriptstyle h}) f(\vec{\omega}_{\!\scriptscriptstyle o})$ [Rusinkiewicz 98, McCool et al. 01]
- Reflection Vector $\rho(\vec{\omega}_{i}^{R}, \vec{\omega}_{a}^{R}) \square f(\vec{\omega}_{i}^{R}) g(\vec{\omega}_{a}^{R})$

Parameterization

- Lighting: 2D function on a sphere $L(\vec{\omega}_i)$
- BRDF
 - Direct
 - Half Angle

• Reflection Vector
$$ho(\vec{o}_{_i}^{\,R},\vec{a}_{_i}^{\,R})$$

- OLF
 - Direct
 - No Half Angle
 - · Reflection Vector

 $B(\vec{R}, \vec{V})$

OLF Parameterization • Direct $B(\vec{N}, \vec{\omega}_o) \Box f(\vec{N}) g(\vec{\omega}_o)$ • Reflection Vector (reflection, normal, view) • Captures structure of BRDF and OLF • Reflective BRDFs, OLFs become low-dimensional $B(\vec{R}, \vec{N}, \vec{V}) \Box f(\vec{R}) g(\vec{N}) h(\vec{V})$ $B(\vec{R}, \vec{N}) \Box f(\vec{R}) g(\vec{N})$ Advantages • Good param. for both BRDF, OLF • Fast computation with convolution • Single reflection map for each view

Example: Phong BRDF $C_f = O(S^2 \sqrt{s})$ Frequency Cost $C_a = O\left(S^4/s\right)$ Angular $S = \text{resolution}, \ s = \text{Phong exponent}$ Frequency space faster unless s > 500Usually 3 to 4 orders of magnitude faster (< 1 s compared to minutes or hours)

Reflection Equation

$$B(\vec{N}, \vec{\omega}_o) = \int_{\Omega} L(R(\vec{N}) \vec{\omega}_i) \rho(\vec{\omega}_i, \vec{\omega}_o) d\omega_i$$

Reflected Radiance Distant Lighting Isotropic BRDF (4D Orientation (2D Environment Map)
Light Field)

$$B = L \otimes \rho$$

Basri and Jacobs 01 Ramamoorthi and Hanrahan 01

Spherical Harmonic expansion

Expand Lighting, BRDF, OLF in spherical harmonics

$$L(\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{+l} L_{lm} Y_{lm}(\theta,\phi)$$

Convolution

- Lighting $L(\vec{\omega}_i)$ coefficients $L(\vec{\omega}_i)$
- BRDF $\rho(\vec{\omega}_i^R, \vec{\omega}_a^R)$

 $ho_{lq,pq}$

• OLF $B(\vec{R}, \vec{V})$

 $B_{lm,pq}$

 $B = L \otimes \rho$

 $\overline{B_{lm,pq}} = \overline{L_{lm}} \rho_{lq,pq}$

Ramamoorthi and Hanrahan 01

This Session

Latta and Kolb: Homomorphic single-term factorization

- Advantages of SHRMS: more accurate, easier to analyze errors/set resolutions, fast computation using convolution
- · Disadvantage: Multi-term, fixed parameterization.
- Future work: compute best single-term approximation, or other factorizations directly from SHRM using PCA

This Session

Sloan et al., Kautz et al: Low frequency lighting

Advantages of SHRMS

- General lighting environments, BRDFs
- Error analysis determines number of terms
- Rapid computation

Disadvantage: As yet, no shadows, interreflection

Results

- SHRM accuracy: comparisons with previous methods (Cabral et al. 99, Kautz and McCool 00) in paper
- Speed of prefiltering: speedups of 3 to 4 orders of magnitude; times in fractions of a second
- Real-time rendering even with multiple SHRMs

Previous Work

Environment Maps

- Blinn & Newell 76, Miller & Hoffman 84, Greene 86, ...
- Kautz & McCool 99, McCool et al. 01
- · Cabral et al. 99
- Latta and Kolb 02

Frequency Space Methods (spherical harmonics)

- Cabral et al. 87, Sillion et al. 91, Westin et al. 92
 Ramamoorthi & Hanrahan 01
- Basri & Jacobs 01

OLF Factorization

 $B(\vec{R}, \vec{N}, \vec{V}) \square f(\vec{R})g(\vec{N})h(\vec{V})$

 $B(\vec{R}, \vec{N}) \square f(\vec{R})g(\vec{N})$

 $B(\vec{R}, \vec{V}) \square f(\vec{R}) h(\vec{V})$

Advantages

Latta and Kolb 02 Wood et al. 00

•Naturally captures diffuse, reflective parts

•Good param. for both BRDF, OLF

- •Fast computation with convolution
- •Single reflection map for each view